雪花算法的原理和实现Java

雪花算法的原理和实现JavaSnowFlake算法,是Twitter开源的分布式id生成算法。其核心思想就是:使用一个64bit的long型的数字作为全局唯一id。在分布式系统中的应用十分广泛,且ID引入了时间戳,基本上保持自增的。这64个bit中,其中1个bit是不用的,然后用其中的41bit作为毫秒数,用10bit作为工作机器id,12bit作为序列号。…

 

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

 

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

 

雪花算法的原理和实现Java

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分,是 1 个 bit:0,这个是无意义的。

  • 第二个部分是 41 个 bit:表示的是时间戳。

  • 第三个部分是 5 个 bit:表示的是机房 id,10001。

  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。

  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

 

①1 bit:是不用的,为啥呢?

 

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

 

②41 bit:表示的是时间戳,单位是毫秒。

 

41 bit 可以表示的数字多达 2^41 – 1,也就是可以标识 2 ^ 41 – 1 个毫秒值,换算成年就是表示 69 年的时间。

 

③10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

 

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

 

④12 bit:这个是用来记录同一个毫秒内产生的不同 id。

 

12 bit 可以代表的最大正整数是 2 ^ 12 – 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

 

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

 

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

 

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

 

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

 

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

 

最终一个 64 个 bit 的 id 就出来了,类似于:

 

雪花算法的原理和实现Java

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

 

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

 

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id。

 

SnowFlake 算法的实现代码如下:


public class IdWorker {

	//因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

	//机器ID  2进制5位  32位减掉1位 31个
	private long workerId;
	//机房ID 2进制5位  32位减掉1位 31个
	private long datacenterId;
	//代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
	private long sequence;
	//设置一个时间初始值    2^41 - 1   差不多可以用69年
	private long twepoch = 1585644268888L;
	//5位的机器id
	private long workerIdBits = 5L;
	//5位的机房id
	private long datacenterIdBits = 5L;
	//每毫秒内产生的id数 2 的 12次方
	private long sequenceBits = 12L;
	// 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
	private long maxWorkerId = -1L ^ (-1L << workerIdBits);
	// 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
	private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

	private long workerIdShift = sequenceBits;
	private long datacenterIdShift = sequenceBits + workerIdBits;
	private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
	private long sequenceMask = -1L ^ (-1L << sequenceBits);
	//记录产生时间毫秒数,判断是否是同1毫秒
	private long lastTimestamp = -1L;
	public long getWorkerId(){
		return workerId;
	}
	public long getDatacenterId() {
		return datacenterId;
	}
	public long getTimestamp() {
		return System.currentTimeMillis();
	}



	public IdWorker(long workerId, long datacenterId, long sequence) {

		// 检查机房id和机器id是否超过31 不能小于0
		if (workerId > maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
		}

		if (datacenterId > maxDatacenterId || datacenterId < 0) {

			throw new IllegalArgumentException(
					String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
		}
		this.workerId = workerId;
		this.datacenterId = datacenterId;
		this.sequence = sequence;
	}

	// 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
	public synchronized long nextId() {
		// 这儿就是获取当前时间戳,单位是毫秒
		long timestamp = timeGen();
		if (timestamp < lastTimestamp) {

			System.err.printf(
					"clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
			throw new RuntimeException(
					String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
							lastTimestamp - timestamp));
		}

		// 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
		// 这个时候就得把seqence序号给递增1,最多就是4096
		if (lastTimestamp == timestamp) {

			// 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
			//这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
			sequence = (sequence + 1) & sequenceMask;
			//当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
			if (sequence == 0) {
				timestamp = tilNextMillis(lastTimestamp);
			}

		} else {
			sequence = 0;
		}
		// 这儿记录一下最近一次生成id的时间戳,单位是毫秒
		lastTimestamp = timestamp;
		// 这儿就是最核心的二进制位运算操作,生成一个64bit的id
		// 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
		// 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
		return ((timestamp - twepoch) << timestampLeftShift) |
				(datacenterId << datacenterIdShift) |
				(workerId << workerIdShift) | sequence;
	}

	/**
	 * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
	 * @param lastTimestamp
	 * @return
	 */
	private long tilNextMillis(long lastTimestamp) {

		long timestamp = timeGen();

		while (timestamp <= lastTimestamp) {
			timestamp = timeGen();
		}
		return timestamp;
	}
	//获取当前时间戳
	private long timeGen(){
		return System.currentTimeMillis();
	}

	/**
	 *  main 测试类
	 * @param args
	 */
	public static void main(String[] args) {
		System.out.println(1&4596);
		System.out.println(2&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
		System.out.println(6&4596);
//		IdWorker worker = new IdWorker(1,1,1);
//		for (int i = 0; i < 22; i++) {
//			System.out.println(worker.nextId());
//		}
	}
}

SnowFlake算法的优点:

(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。

 

SnowFlake算法的缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。
 

 

实际中我们的机房并没有那么多,我们可以改进改算法,将10bit的机器id优化,成业务表或者和我们系统相关的业务。

 请尊重作者劳动成果,转载请标明原文链接(原文持续更新,建议阅读原文):https://blog.csdn.net/lq18050010830/article/details/89845790

今天的文章雪花算法的原理和实现Java分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/7543.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注