支持向量回归模型_支持向量回归SVR实例

支持向量回归模型_支持向量回归SVR实例支持向量回归(SupportVectorRegression)支持向量机除了能够分类,还可以用于回归

支持向量回归(Support Vector Regression)

支持向量机除了能够分类,还可以用于回归。

回归的目的是得到一个能够尽量拟合训练集样本的模型 f ( x ) f(\mathbf{x}) f(x),通常用的方法是构建一个样本标签与模型预测值的损失函数,使损失函数最小化从而确定模型 f ( x ) f(\mathbf{x}) f(x)

在这里插入图片描述

例如,在线性回归模型中,损失函数(L2损失,L1损失,huber损失)由模型输出 f ( x ) f(\mathbf{x}) f(x)与真实输出 y y y之间的差别来计算,通过最小化损失函数来确定模型 f ( x ) f(\mathbf{x}) f(x),当且仅当 f ( x ) f(\mathbf{x}) f(x) y y y完全相等时,损失才为0。

那支持向量机是如何用于回归的呢?

支持向量机的精髓在于间隔最大化。

  • 在分类任务中,使靠超平面最近的样本点之间的间隔最大;

在这里插入图片描述

  • 而在回归任务中,同样也是间隔最大,不同的是它使靠超平面最远的样本点之间的间隔最大。

在这里插入图片描述
如果使靠超平面最远的样本点之间的间隔最大,那么上图样本点的回归超平面结果就应该变成下左图那样。

在这里插入图片描述
显然,我们希望回归能达到右图的效果,于是SVR对间隔加了限制,对所有的样本点,回归模型 f ( x ) f(\mathbf{x}) f(x) y y y的偏差必须 ≤ ε \le \varepsilon ε。我们把这个偏差范围称作 ε \varepsilon ε管道。

在这里插入图片描述
依据以上的思路,SVR的优化问题可以用数学式表示为
min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 2 s . t . ∣ y i − ( w T x i + b ) ∣ ≤ ε , i = 1 , 2 , ⋯   , N \begin{aligned} &\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||_2^2 \\ s.t. \quad |y_i – (\mathbf{w}^T &\mathbf{x}_i + b)| \le \varepsilon, \quad i = 1,2,\cdots,N \end{aligned} s.t.yi(wTw,bmin21w22xi+b)ε,i=1,2,,N
SVR的目的是:保证所有样本点在 ε \varepsilon ε管道内的前提下,回归超平面 f ( x ) f(\mathbf{x}) f(x)尽可能地平。

在这里插入图片描述
ε \varepsilon ε不变的前提下,回归超平面 f ( x ) f(\mathbf{x}) f(x)尽可能平和间隔尽可能大是等效的。

带松弛变量的SVR

实际应用中, ε \varepsilon ε设置太小无法保证所有样本点都在 ε \varepsilon ε管道内, ε \varepsilon ε太大回归超平面会被一些异常点带偏。

在这里插入图片描述
和软间隔SVM模型类似,SVR允许每个样本 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)添加松弛变量 ξ i ≥ 0 \xi_i \ge 0 ξi0,用来描述样本点偏离 ε \varepsilon ε管道的程度。

如何添加松弛变量?

如果直接在约束条件中加上松弛变量,变成 ∣ y i − ( w T x i + b ) ∣ ≤ ε + ξ i |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| \le \varepsilon + \xi_i yi(wTxi+b)ε+ξi,即
{ y i − ( w T x i + b ) ≤ ε + ξ i 上 界 约 束 ( w T x i + b ) − y i ≤ ε + ξ i 下 界 约 束 \left\{ \begin{aligned} y_i – (\mathbf{w}^T \mathbf{x}_i + b) &\le \varepsilon + \xi_i \quad 上界约束 \\ (\mathbf{w}^T \mathbf{x}_i + b) – y_i &\le \varepsilon + \xi_i \quad 下界约束 \end{aligned} \right. {
yi(wTxi+b)(wTxi+b)yiε+ξiε+ξi

在这里插入图片描述
显然,超出间隔上界的样本点影响到了下界面的约束。

那么是否可以对超出不同界面的样本点分开添加松弛变量?

比如:样本点超出间隔上界,我们令
{ y i − ( w T x i + b ) ≤ ε + ξ i 上 界 约 束 ( w T x i + b ) − y i ≤ ε 下 界 约 束 \left\{ \begin{aligned} y_i – (\mathbf{w}^T \mathbf{x}_i + b) &\le \varepsilon + \xi_i \quad 上界约束 \\ (\mathbf{w}^T \mathbf{x}_i + b) – y_i &\le \varepsilon \quad 下界约束 \end{aligned} \right. {
yi(wTxi+b)(wTxi+b)yiε+ξiε

超出间隔下界,令
{ y i − ( w T x i + b ) ≤ ε 上 界 约 束 ( w T x i + b ) − y i ≤ ε + ξ i 下 界 约 束 \left\{ \begin{aligned} y_i – (\mathbf{w}^T \mathbf{x}_i + b) &\le \varepsilon \quad 上界约束 \\ (\mathbf{w}^T \mathbf{x}_i + b) – y_i &\le \varepsilon + \xi_i \quad 下界约束 \end{aligned} \right. {
yi(wTxi+b)(wTxi+b)yiεε+ξi

但是事先不知道样本点超出的是上界还是下界,因此也不可行,而且超出上界和超出下界的约束条件形式还不相同。

其实,上下界的松弛变量可以用不同符号来表示: ξ i ⋀ ≥ 0 , ξ i ⋁ ≥ 0 \xi_i^{\bigwedge} \ge 0,\xi_i^{\bigvee} \ge 0 ξi0,ξi0,约束条件变成
{ y i − ( w T x i + b ) ≤ ε + ξ i ⋀ 上 界 约 束 ( w T x i + b ) − y i ≤ ε + ξ i ⋁ 下 界 约 束 \left\{ \begin{aligned} y_i – (\mathbf{w}^T \mathbf{x}_i + b) &\le \varepsilon + \xi_i^{\bigwedge} \quad 上界约束 \\ (\mathbf{w}^T \mathbf{x}_i + b) – y_i &\le \varepsilon + \xi_i^{\bigvee} \quad 下界约束 \end{aligned} \right. yi(wTxi+b)(wTxi+b)yiε+ξiε+ξi
ξ i ⋀ ≠ 0 , ξ i ⋁ = 0 \xi_i^{\bigwedge} \ne 0,\xi_i^{\bigvee} = 0 ξi=0,ξi=0时,样本点超出上界;

ξ i ⋀ = 0 , ξ i ⋁ ≠ 0 \xi_i^{\bigwedge} = 0,\xi_i^{\bigvee} \ne 0 ξi=0,ξi=0时,样本点超出下界;

ξ i ⋀ = 0 , ξ i ⋁ = 0 \xi_i^{\bigwedge} = 0,\xi_i^{\bigvee} = 0 ξi=0,ξi=0时,样本点在 ε \varepsilon ε通道内。

ξ i ⋀ ≠ 0 , ξ i ⋁ ≠ 0 \xi_i^{\bigwedge} \ne 0, \xi_i^{\bigvee} \ne 0 ξi=0,ξi=0这种情况不可能出现,因为这表示样本点既超出上界又超出下界,明显不可能发生。

引入松弛变量,SVR的优化问题形式为
min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 2 + C ∑ i = 1 N ( ξ i ⋁ + ξ i ⋀ ) s . t . − ε − ξ i ⋁ ≤ y i − ( w T x i + b ) ≤ ε + ξ i ⋀ , i = 1 , 2 , ⋯   , N ξ i ⋁ ≥ 0 , ξ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} &\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^N (\xi_i^{\bigvee} + \xi_i^{\bigwedge}) \\ s.t. \quad – \varepsilon – \xi_i^{\bigvee}& \le y_i – (\mathbf{w}^T \mathbf{x}_i + b) \le \varepsilon + \xi_i^{\bigwedge}, \quad i = 1,2,\cdots,N \\ &\xi_i^{\bigvee} \ge 0, \xi_i^{\bigwedge} \ge 0, \quad i = 1,2,\cdots,N \end{aligned} s.t.εξiw,bmin21w22+Ci=1N(ξi+ξi)yi(wTxi+b)ε+ξi,i=1,2,,Nξi0,ξi0,i=1,2,,N

带松弛变量的SVR目标函数的优化

依然与SVM分类模型类似,先用拉格朗日乘子法,将目标函数变成:
L ( w , b , α ⋁ , α ⋀ , ξ ⋁ , ξ ⋀ , μ ⋁ , μ ⋀ ) = 1 2 ∣ ∣ w ∣ ∣ 2 2 + C ∑ i = 1 N ( ξ i ⋁ + ξ i ⋀ ) + ∑ i = 1 N α i ⋁ [ − ε − ξ i ⋁ − y i + ( w T x i + b ) ] + ∑ i = 1 N α i ⋀ [ y i − ( w T x i + b ) − ε − ξ i ⋀ ] − ∑ i = 1 N μ i ⋁ ξ i ⋁ − ∑ i = 1 N μ i ⋀ ξ i ⋀ \begin{aligned} &L(\mathbf{w},b,\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) \\ = &\frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^N (\xi_i^{\bigvee} + \xi_i^{\bigwedge}) + \sum_{i=1}^N \alpha_i^{\bigvee} [- \varepsilon – \xi_i^{\bigvee} – y_i + (\mathbf{w}^T \mathbf{x}_i + b)] \\ &+ \sum_{i=1}^N \alpha_i^{\bigwedge} [y_i – (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigwedge}] – \sum_{i=1}^N \mu_i^{\bigvee} \xi_i^{\bigvee} – \sum_{i=1}^N \mu_i^{\bigwedge} \xi_i^{\bigwedge} \end{aligned} =L(w,b,α,α,ξ,ξ,μ,μ)21w22+Ci=1N(ξi+ξi)+i=1Nαi[εξiyi+(wTxi+b)]+i=1Nαi[yi(wTxi+b)εξi]i=1Nμiξii=1Nμiξi

其中, α i ⋁ ≥ 0 , α i ⋀ ≥ 0 , μ i ⋁ ≥ 0 , μ i ⋀ ≥ 0 \alpha_i^{\bigvee} \ge 0, \alpha_i^{\bigwedge} \ge 0, \mu_i^{\bigvee} \ge 0, \mu_i^{\bigwedge} \ge 0 αi0,αi0,μi0,μi0都是拉格朗日系数。

那么优化问题变为
min ⁡ w , b , ξ ⋁ , ξ ⋀   max ⁡ α ⋁ , α ⋀ , μ ⋁ , μ ⋀   L ( w , b , α ⋁ , α ⋀ , ξ ⋁ , ξ ⋀ , μ ⋁ , μ ⋀ ) s . t . ξ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N ξ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} \min_{\mathbf{w}, b, \boldsymbol{\xi}^{\bigvee}, \boldsymbol{\xi}^{\bigwedge}} \, \max_{\boldsymbol{\alpha}^{\bigvee}, \boldsymbol{\alpha}^{\bigwedge}, \boldsymbol{\mu}^{\bigvee}, \boldsymbol{\mu}^{\bigwedge}} \, L(&\mathbf{w},b,\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) \\ s.t. \quad \xi_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \xi_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \\ \quad \alpha_i^{\bigvee} \ge 0,& \quad i=1,2,\cdots,N \\ \alpha_i^{\bigwedge} \ge 0,& \quad i=1,2,\cdots,N \\ \mu_i^{\bigvee} \ge 0,& \quad i=1,2,\cdots,N \\ \mu_i^{\bigwedge} \ge 0,& \quad i=1,2,\cdots,N \end{aligned} w,b,ξ,ξminα,α,μ,μmaxL(s.t.ξi0,ξi0,αi0,αi0,μi0,μi0,w,b,α,α,ξ,ξ,μ,μ)i=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,N
优化问题满足KKT条件,可以等价为对偶问题
max ⁡ α ⋁ , α ⋀ , μ ⋁ , μ ⋀   min ⁡ w , b , ξ ⋁ , ξ ⋀   L ( w , b , α ⋁ , α ⋀ , ξ ⋁ , ξ ⋀ , μ ⋁ , μ ⋀ ) s . t . ξ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N ξ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} \max_{\boldsymbol{\alpha}^{\bigvee}, \boldsymbol{\alpha}^{\bigwedge}, \boldsymbol{\mu}^{\bigvee}, \boldsymbol{\mu}^{\bigwedge}} \, \min_{\mathbf{w}, b, \boldsymbol{\xi}^{\bigvee}, \boldsymbol{\xi}^{\bigwedge}} \, L(&\mathbf{w},b,\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) \\ s.t. \quad \xi_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \xi_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \\ \quad \alpha_i^{\bigvee} \ge 0,& \quad i=1,2,\cdots,N \\ \alpha_i^{\bigwedge} \ge 0,& \quad i=1,2,\cdots,N \\ \mu_i^{\bigvee} \ge 0,& \quad i=1,2,\cdots,N \\ \mu_i^{\bigwedge} \ge 0,& \quad i=1,2,\cdots,N \end{aligned} α,α,μ,μmaxw,b,ξ,ξminL(s.t.ξi0,ξi0,αi0,αi0,μi0,μi0,w,b,α,α,ξ,ξ,μ,μ)i=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,N
先求目标函数的最小化问题
min ⁡ w , b , ξ ⋁ , ξ ⋀ L ( w , b , α ⋁ , α ⋀ , ξ ⋁ , ξ ⋀ , μ ⋁ , μ ⋀ ) \min_{\mathbf{w},b,\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge}} L(\mathbf{w},b,\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) w,b,ξ,ξminL(w,b,α,α,ξ,ξ,μ,μ)
对参数求偏导得:
{ ∂ L ∂ w = 0 ⇒ w = ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i ∂ L ∂ b = 0 ⇒ ∑ i = 1 N ( α i ⋀ − α i ⋁ ) = 0 ∂ L ∂ ξ i ⋁ = 0 ⇒ C − α i ⋁ − μ i ⋁ = 0 ∂ L ∂ ξ i ⋀ = 0 ⇒ C − α i ⋀ − μ i ⋀ = 0 \left\{ \begin{aligned} &\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) \mathbf{x}_i \\ &\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) = 0 \\ &\frac{\partial L}{\partial \xi_i^{\bigvee}} = 0 \Rightarrow C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} = 0 \\ &\frac{\partial L}{\partial \xi_i^{\bigwedge}} = 0 \Rightarrow C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} = 0 \end{aligned} \right. wL=0w=i=1N(αiαi)xibL=0i=1N(αiαi)=0ξiL=0Cαiμi=0ξiL=0Cαiμi=0

ψ ( α ⋁ , α ⋀ , μ ⋁ , μ ⋀ ) = min ⁡ w , b , ξ ⋁ , ξ ⋀ L ( w , b , α ⋁ , α ⋀ , ξ ⋁ , ξ ⋀ , μ ⋁ , μ ⋀ ) \psi(\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) = \min_{\mathbf{w}, b, \boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge}} L(\mathbf{w},b,\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\xi}^{\bigvee},\boldsymbol{\xi}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) ψ(α,α,μ,μ)=w,b,ξ,ξminL(w,b,α,α,ξ,ξ,μ,μ)
把以上偏导结果代入目标函数得到
ψ ( α ⋁ , α ⋀ , μ ⋁ , μ ⋀ ) = 1 2 ∣ ∣ w ∣ ∣ 2 2 + C ∑ i = 1 N ( ξ i ⋁ + ξ i ⋀ ) + ∑ i = 1 N α i ⋁ [ − ε − ξ i ⋁ − y i + ( w T x i + b ) ] + ∑ i = 1 N α i ⋀ [ y i − ( w T x i + b ) − ε − ξ i ⋀ ] − ∑ i = 1 N μ i ⋁ ξ i ⋁ − ∑ i = 1 N μ i ⋀ ξ i ⋀ = 1 2 ∣ ∣ w ∣ ∣ 2 2 + ∑ i = 1 N [ ( C − α i ⋁ − μ i ⋁ ) ξ i ⋁ + ( C − α i ⋀ − μ i ⋀ ) ξ i ⋀ ] + ∑ i = 1 N α i ⋁ [ − ε − y i + ( w T x i + b ) ] + ∑ i = 1 N α i ⋀ [ y i − ( w T x i + b ) − ε ] = 1 2 ∣ ∣ w ∣ ∣ 2 2 + ∑ i = 1 N α i ⋁ [ − ε − y i + ( w T x i + b ) ] + ∑ i = 1 N α i ⋀ [ y i − ( w T x i + b ) − ε ] = 1 2 w T w − w T ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i + b ∑ i = 1 N ( α i ⋁ − α i ⋀ ) − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] = 1 2 w T ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i − w T ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] = − 1 2 w T ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] = − 1 2 [ ∑ j = 1 N ( α j ⋀ − α j ⋁ ) x j ] T ∑ i = 1 N ( α i ⋀ − α i ⋁ ) x i − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] = − 1 2 ∑ i = 1 N ∑ j = 1 N ( α i ⋀ − α i ⋁ ) ( α j ⋀ − α j ⋁ ) x j T x i − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] = − 1 2 ∑ i = 1 N ∑ j = 1 N ( α i ⋀ − α i ⋁ ) ( α j ⋀ − α j ⋁ ) x i T x j − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] \begin{aligned} &\psi(\boldsymbol{\alpha}^{\bigvee},\boldsymbol{\alpha}^{\bigwedge},\boldsymbol{\mu}^{\bigvee},\boldsymbol{\mu}^{\bigwedge}) \\ = &\frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^N (\xi_i^{\bigvee} + \xi_i^{\bigwedge}) + \sum_{i=1}^N \alpha_i^{\bigvee} [- \varepsilon – \xi_i^{\bigvee} – y_i + (\mathbf{w}^T \mathbf{x}_i + b)] \\ &+ \sum_{i=1}^N \alpha_i^{\bigwedge} [y_i – (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigwedge}] – \sum_{i=1}^N \mu_i^{\bigvee} \xi_i^{\bigvee} – \sum_{i=1}^N \mu_i^{\bigwedge} \xi_i^{\bigwedge} \\ = &\frac{1}{2} ||\mathbf{w}||_2^2 + \sum_{i=1}^N [(C-\alpha_i^{\bigvee}-\mu_i^{\bigvee})\xi_i^{\bigvee} + (C-\alpha_i^{\bigwedge}-\mu_i^{\bigwedge}) \xi_i^{\bigwedge}] \\ &+ \sum_{i=1}^N \alpha_i^{\bigvee} [- \varepsilon – y_i + (\mathbf{w}^T \mathbf{x}_i + b)] + \sum_{i=1}^N \alpha_i^{\bigwedge} [y_i – (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon] \\ = &\frac{1}{2} ||\mathbf{w}||_2^2 + \sum_{i=1}^N \alpha_i^{\bigvee} [- \varepsilon – y_i + (\mathbf{w}^T \mathbf{x}_i + b)] + \sum_{i=1}^N \alpha_i^{\bigwedge} [y_i – (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon] \\ = &\frac{1}{2} \mathbf{w}^T \mathbf{w} – \mathbf{w}^T \sum_{i=1}^N ( \alpha_i^{\bigwedge} – \alpha_i^{\bigvee} ) \mathbf{x}_i + b \sum_{i=1}^N (\alpha_i^{\bigvee} – \alpha_i^{\bigwedge}) – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ = &\frac{1}{2} \mathbf{w}^T \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) \mathbf{x}_i – \mathbf{w}^T \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) \mathbf{x}_i – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ = & – \frac{1}{2} \mathbf{w}^T \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) \mathbf{x}_i – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ = & – \frac{1}{2} [ \sum_{j=1}^N (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_j ]^T \sum_{i=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) \mathbf{x}_i – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ = & – \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_j^T\mathbf{x}_i – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ = & – \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_i^T\mathbf{x}_j – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \end{aligned} =========ψ(α,α,μ,μ)21w22+Ci=1N(ξi+ξi)+i=1Nαi[εξiyi+(wTxi+b)]+i=1Nαi[yi(wTxi+b)εξi]i=1Nμiξii=1Nμiξi21w22+i=1N[(Cαiμi)ξi+(Cαiμi)ξi]+i=1Nαi[εyi+(wTxi+b)]+i=1Nαi[yi(wTxi+b)ε]21w22+i=1Nαi[εyi+(wTxi+b)]+i=1Nαi[yi(wTxi+b)ε]21wTwwTi=1N(αiαi)xi+bi=1N(αiαi)i=1N[(εyi)αi+(ε+yi)αi]21wTi=1N(αiαi)xiwTi=1N(αiαi)xii=1N[(εyi)αi+(ε+yi)αi]21wTi=1N(αiαi)xii=1N[(εyi)αi+(ε+yi)αi]21[j=1N(αjαj)xj]Ti=1N(αiαi)xii=1N[(εyi)αi+(ε+yi)αi]21i=1Nj=1N(αiαi)(αjαj)xjTxii=1N[(εyi)αi+(ε+yi)αi]21i=1Nj=1N(αiαi)(αjαj)xiTxji=1N[(εyi)αi+(ε+yi)αi]
因为目标函数已经消去了参数 ξ ⋁ \boldsymbol{\xi}^{\bigvee} ξ ξ ⋀ \boldsymbol{\xi}^{\bigwedge} ξ,所以相应的约束条件也可以去掉。

剩下约束条件
α i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} \alpha_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \alpha_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \end{aligned} αi0,αi0,μi0,μi0,i=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,N
联合等式
C − α i ⋁ − μ i ⋁ = 0 , i = 1 , 2 , ⋯   , N C − α i ⋀ − μ i ⋀ = 0 , i = 1 , 2 , ⋯   , N \begin{aligned} C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} = 0,& \quad i = 1,2,\cdots,N \\ C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} = 0,& \quad i = 1,2,\cdots,N \end{aligned} Cαiμi=0,Cαiμi=0,i=1,2,,Ni=1,2,,N
可以去掉 μ i ⋁ , μ i ⋀ \mu_i^{\bigvee}, \mu_i^{\bigwedge} μi,μi,等效为
0 ≤ α i ⋁ ≤ C , i = 1 , 2 , ⋯   , N 0 ≤ α i ⋀ ≤ C , i = 1 , 2 , ⋯   , N \begin{aligned} 0 \le \alpha_i^{\bigvee} \le C,& \quad i = 1,2,\cdots,N \\ 0 \le \alpha_i^{\bigwedge} \le C,& \quad i = 1,2,\cdots,N \end{aligned} 0αiC,0αiC,i=1,2,,Ni=1,2,,N

去掉包含参数 μ i ⋁ , μ i ⋀ \mu_i^{\bigvee}, \mu_i^{\bigwedge} μi,μi的约束条件的原因和软间隔SVM分类模型的类似,是为了让整个优化问题涉及的参数尽量少,方便优化问题的求解。

综上,优化问题的数学形式表示为:
max ⁡ α ⋁ , α ⋀   − 1 2 ∑ i = 1 N ∑ j = 1 N ( α i ⋀ − α i ⋁ ) ( α j ⋀ − α j ⋁ ) x i T x j − ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] s . t . ∑ i = 1 N ( α i ⋀ − α i ⋁ ) = 0 0 ≤ α i ⋁ ≤ C , i = 1 , 2 , ⋯   , N 0 ≤ α i ⋀ ≤ C , i = 1 , 2 , ⋯   , N \begin{aligned} \max_{\boldsymbol{\alpha}^{\bigvee}, \boldsymbol{\alpha}^{\bigwedge}} \, – \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{\bigwedge} – &\alpha_i^{\bigvee}) (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_i^T \mathbf{x}_j – \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ s.t. \quad &\sum_{i=1}^N(\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) = 0 \\ &0 \le \alpha_i^{\bigvee} \le C, \quad i=1,2,\cdots,N \\ &0 \le \alpha_i^{\bigwedge} \le C, \quad i=1,2,\cdots,N \end{aligned} α,αmax21i=1Nj=1N(αis.t.αi)(αjαj)xiTxji=1N[(εyi)αi+(ε+yi)αi]i=1N(αiαi)=00αiC,i=1,2,,N0αiC,i=1,2,,N
目标函数去掉负号,将上述的最大化问题变成最小化问题,得到等价问题:
min ⁡ α ⋁ , α ⋀   1 2 ∑ i = 1 N ∑ j = 1 N ( α i ⋀ − α i ⋁ ) ( α j ⋀ − α j ⋁ ) x i T x j + ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] s . t . ∑ i = 1 N ( α i ⋀ − α i ⋁ ) = 0 0 ≤ α i ⋁ ≤ C , i = 1 , 2 , ⋯   , N 0 ≤ α i ⋀ ≤ C , i = 1 , 2 , ⋯   , N \begin{aligned} \min_{\boldsymbol{\alpha}^{\bigvee}, \boldsymbol{\alpha}^{\bigwedge}} \, \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{\bigwedge} – &\alpha_i^{\bigvee}) (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_i^T\mathbf{x}_j + \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ s.t. \quad &\sum_{i=1}^N(\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) = 0 \\&0 \le \alpha_i^{\bigvee} \le C, \quad i=1,2,\cdots,N \\&0 \le \alpha_i^{\bigwedge} \le C, \quad i=1,2,\cdots,N \end{aligned} α,αmin21i=1Nj=1N(αis.t.αi)(αjαj)xiTxj+i=1N[(εyi)αi+(ε+yi)αi]i=1N(αiαi)=00αiC,i=1,2,,N0αiC,i=1,2,,N
通过SMO算法可以求得最优参数 α ⋁ ∗ {\boldsymbol{\alpha}^{\bigvee}}^* α α ⋀ ∗ {\boldsymbol{\alpha}^{\bigwedge}}^* α,然后计算
w ∗ = ∑ i = 1 N ( α i ⋀ ∗ − α i ⋁ ∗ ) x i \mathbf{w}^* = \sum_{i=1}^N ({\alpha_i^{\bigwedge}}^* – {\alpha_i^{\bigvee}}^*) \mathbf{x}_i w=i=1N(αiαi)xi

与软间隔SVM分类模型类似,SVR的支持向量并不都在最大间隔边界上,而且SVR上下界的数学表达式还不相同,为方便处理,我们只选用下界的支持向量(当然,你也可以选用上界的支持向量)。

在这里插入图片描述
对任一下界的支持向量 ( x k , y k ) (\mathbf{x}_k,y_k) (xk,yk),有
b ∗ = y k + ϵ − w ∗ T x k b^* = y_k +\epsilon – {\mathbf{w}^*}^T \mathbf{x}_k b=yk+ϵwTxk

实践中常采用一种求 b ∗ b^* b的更鲁棒(robust)的方法:选取多个(或所有)下界(或上界)的支持向量求解b后再取平均。

SVM回归模型的支持向量

已知KKT条件(部分,不是全部):
C − α i ⋁ − μ i ⋁ = 0 , i = 1 , 2 , ⋯   , N C − α i ⋀ − μ i ⋀ = 0 , i = 1 , 2 , ⋯   , N α i ⋁ [ ε + ξ i ⋁ + y i − ( w T x i + b ) ] = 0 , i = 1 , 2 , ⋯   , N α i ⋀ [ ε + ξ i ⋀ − y i + ( w T x i + b ) ] = 0 , i = 1 , 2 , ⋯   , N μ i ⋁ ξ i ⋁ = 0 , i = 1 , 2 , ⋯   , N μ i ⋀ ξ i ⋀ = 0 , i = 1 , 2 , ⋯   , N y i ≥ ( w T x i + b ) − ε − ξ i ⋁ , i = 1 , 2 , ⋯   , N y i ≤ ( w T x i + b ) + ε + ξ i ⋀ , i = 1 , 2 , ⋯   , N ξ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N ξ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N α i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋁ ≥ 0 , i = 1 , 2 , ⋯   , N μ i ⋀ ≥ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} = 0,& \quad i = 1,2,\cdots,N \\ C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} = 0,& \quad i = 1,2,\cdots,N \\ \alpha_i^{\bigvee} [ \varepsilon + \xi_i^{\bigvee} + y_i – (\mathbf{w}^T \mathbf{x}_i + b)] = 0,& \quad i = 1,2,\cdots,N \\ \alpha_i^{\bigwedge} [ \varepsilon + \xi_i^{\bigwedge} – y_i + (\mathbf{w}^T \mathbf{x}_i + b) ] = 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigvee} \xi_i^{\bigvee} = 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigwedge} \xi_i^{\bigwedge} = 0,& \quad i = 1,2,\cdots,N \\ y_i \ge (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee},& \quad i = 1,2,\cdots,N \\ y_i \le (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge},& \quad i = 1,2,\cdots,N \\ \xi_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \xi_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \\ \alpha_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \alpha_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigvee} \ge 0,& \quad i = 1,2,\cdots,N \\ \mu_i^{\bigwedge} \ge 0,& \quad i = 1,2,\cdots,N \end{aligned} Cαiμi=0,Cαiμi=0,αi[ε+ξi+yi(wTxi+b)]=0,αi[ε+ξiyi+(wTxi+b)]=0,μiξi=0,μiξi=0,yi(wTxi+b)εξi,yi(wTxi+b)+ε+ξi,ξi0,ξi0,αi0,αi0,μi0,μi0,i=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,Ni=1,2,,N

我们有以下推论:

  • 如果 α i ⋁ ≠ 0 \alpha_i^{\bigvee} \ne 0 αi=0 α i ⋀ ≠ 0 \alpha_i^{\bigwedge} \ne 0 αi=0,那么根据
    { α i ⋁ [ ε + ξ i ⋁ + y i − ( w T x i + b ) ] = 0 α i ⋀ [ ε + ξ i ⋀ − y i + ( w T x i + b ) ] = 0 \left\{ \begin{aligned} \alpha_i^{\bigvee} [ \varepsilon + \xi_i^{\bigvee} + y_i – (\mathbf{w}^T \mathbf{x}_i + b)] &= 0 \\ \alpha_i^{\bigwedge} [ \varepsilon + \xi_i^{\bigwedge} – y_i + (\mathbf{w}^T \mathbf{x}_i + b) ] &= 0 \end{aligned} \right. αi[ε+ξi+yi(wTxi+b)]αi[ε+ξiyi+(wTxi+b)]=0=0
    样本点 ( x i , y i ) (\mathbf{x}_i, y_i) (xi,yi)就必须满足
    { ε + ξ i ⋁ + y i − ( w T x i + b ) = 0 ε + ξ i ⋀ − y i + ( w T x i + b ) = 0 \left\{ \begin{aligned} \varepsilon + \xi_i^{\bigvee} + y_i – (\mathbf{w}^T \mathbf{x}_i + b) &= 0 \\ \varepsilon + \xi_i^{\bigwedge} – y_i + (\mathbf{w}^T \mathbf{x}_i + b) &= 0 \end{aligned} \right. ε+ξi+yi(wTxi+b)ε+ξiyi+(wTxi+b)=0=0

    { y i = ( w T x i + b ) − ε − ξ i ⋁ y i = ( w T x i + b ) + ε + ξ i ⋀ \left\{ \begin{aligned} y_i = (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee} \\ y_i = (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge} \end{aligned} \right. yi=(wTxi+b)εξiyi=(wTxi+b)+ε+ξi
    因为
    { ξ i ⋁ ≥ 0 ξ i ⋀ ≥ 0 \left\{ \begin{aligned} \xi_i^{\bigvee} \ge 0 \\ \xi_i^{\bigwedge} \ge 0 \end{aligned} \right. ξi0ξi0

    所以样本点 ( x i , y i ) (\mathbf{x}_i, y_i) (xi,yi)同时在上界外和下界外,显然是不可能的。

在这里插入图片描述

  • 如果 α i ⋁ = 0 \alpha_i^{\bigvee}=0 αi=0 α i ⋀ = 0 \alpha_i^{\bigwedge}=0 αi=0,根据
    { C − α i ⋁ − μ i ⋁ = 0 C − α i ⋀ − μ i ⋀ = 0 \left\{ \begin{aligned} C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} &= 0 \\ C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} &= 0 \end{aligned} \right. CαiμiCαiμi=0=0

    { μ i ⋁ = C μ i ⋀ = C \left\{ \begin{aligned} \mu_i^{\bigvee} &= C \\ \mu_i^{\bigwedge} &= C \end{aligned} \right. μiμi=C=C
    再根据
    { μ i ⋁ ξ i ⋁ = 0 μ i ⋀ ξ i ⋀ = 0 \left\{ \begin{aligned} \mu_i^{\bigvee} \xi_i^{\bigvee} &= 0 \\ \mu_i^{\bigwedge} \xi_i^{\bigwedge} &= 0 \end{aligned} \right. μiξiμiξi=0=0

    { ξ i ⋁ = 0 ξ i ⋀ = 0 \left\{ \begin{aligned} \xi_i^{\bigvee} &= 0 \\ \xi_i^{\bigwedge} &= 0 \end{aligned} \right. ξiξi=0=0
    所以
    { y i ≥ ( w T x i + b ) − ε y i ≤ ( w T x i + b ) + ε \left\{ \begin{aligned} y_i &\ge (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon \\ y_i &\le (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon \end{aligned} \right. {
    yiyi(wTxi+b)ε(wTxi+b)+ε

    样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi) ε \varepsilon ε通道内,不是支持向量

在这里插入图片描述
上面两种情况的讨论可以总结出
α i ⋁ ≠ 0 ⇒ y i = ( w T x i + b ) − ε − ξ i ⋁ α i ⋀ ≠ 0 ⇒ y i = ( w T x i + b ) + ε + ξ i ⋀ α i ⋁ = 0 ⇒ y i ≥ ( w T x i + b ) − ε α i ⋀ = 0 ⇒ y i ≤ ( w T x i + b ) + ε \begin{aligned} \alpha_i^{\bigvee} \ne 0 \quad&\Rightarrow \quad y_i = (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee} \\ \alpha_i^{\bigwedge} \ne 0 \quad&\Rightarrow \quad y_i = (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge} \\ \alpha_i^{\bigvee}=0 \quad&\Rightarrow \quad y_i \ge (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon \\ \alpha_i^{\bigwedge}=0 \quad&\Rightarrow \quad y_i \le (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon \end{aligned} αi=0αi=0αi=0αi=0yi=(wTxi+b)εξiyi=(wTxi+b)+ε+ξiyi(wTxi+b)εyi(wTxi+b)+ε

  • 如果 α i ⋁ ≠ 0 \alpha_i^{\bigvee} \ne 0 αi=0 α i ⋀ = 0 \alpha_i^{\bigwedge} = 0 αi=0,有
    { y i = ( w T x i + b ) − ε − ξ i ⋁ y i ≤ ( w T x i + b ) + ε ⇒ y i = ( w T x i + b ) − ε − ξ i ⋁ \left\{ \begin{aligned} y_i &= (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee} \\ y_i &\le (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon \end{aligned} \right. \quad \Rightarrow \quad y_i = (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee} {
    yiyi=(wTxi+b)εξi(wTxi+b)+ε
    yi=(wTxi+b)εξi

    说明样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)在最大间隔的下界外,是支持向量

在这里插入图片描述
可以更进一步讨论:

  • 如果 0 < α i ⋁ < C 0 \lt \alpha_i^{\bigvee} \lt C 0<αi<C,根据
    C − α i ⋁ − μ i ⋁ = 0 C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} = 0 Cαiμi=0
    可知
    μ i ⋁ > 0 \mu_i^{\bigvee} \gt 0 μi>0

    μ i ⋁ ξ i ⋁ = 0 \mu_i^{\bigvee} \xi_i^{\bigvee} = 0 μiξi=0
    得出
    ξ i ⋁ = 0 \xi_i^{\bigvee} = 0 ξi=0
    因此
    y i = ( w T x i + b ) − ε y_i = (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon yi=(wTxi+b)ε
    说明样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)恰好落在最大间隔的下界

  • 如果 α i ⋁ = C \alpha_i^{\bigvee} = C αi=C,根据
    C − α i ⋁ − μ i ⋁ = 0 C – \alpha_i^{\bigvee} – \mu_i^{\bigvee} = 0 Cαiμi=0
    可知
    μ i ⋁ = 0 \mu_i^{\bigvee} = 0 μi=0

    μ i ⋁ ξ i ⋁ = 0 \mu_i^{\bigvee} \xi_i^{\bigvee} = 0 μiξi=0
    得出
    ξ i ⋁ ≥ 0 \xi_i^{\bigvee} \ge 0 ξi0
    由于样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)满足
    y i = ( w T x i + b ) − ε − ξ i ⋁ y_i = (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon – \xi_i^{\bigvee} yi=(wTxi+b)εξi
    说明样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)不高于最大间隔的下界

  • 同理,如果 α i ⋁ = 0 \alpha_i^{\bigvee} = 0 αi=0 α i ⋀ ≠ 0 \alpha_i^{\bigwedge} \ne 0 αi=0,那么有
    { y i = ( w T x i + b ) + ε + ξ i ⋀ y i ≥ ( w T x i + b ) − ε ⇒ y i = ( w T x i + b ) + ε + ξ i ⋀ \left\{ \begin{aligned} y_i &= (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge} \\ y_i &\ge (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon \end{aligned} \quad \Rightarrow \quad y_i = (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge} \right. {
    yiyi=(wTxi+b)+ε+ξi(wTxi+b)εyi=(wTxi+b)+ε+ξi

    说明样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)在最大间隔的上界外,是支持向量

在这里插入图片描述

  • 如果 0 < α i ⋀ < C 0 \lt \alpha_i^{\bigwedge} \lt C 0<αi<C,根据
    C − α i ⋀ − μ i ⋀ = 0 C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} = 0 Cαiμi=0
    可知
    μ i ⋀ > 0 \mu_i^{\bigwedge} \gt 0 μi>0

    μ i ⋀ ξ i ⋀ = 0 \mu_i^{\bigwedge} \xi_i^{\bigwedge} = 0 μiξi=0
    得出
    ξ i ⋀ = 0 \xi_i^{\bigwedge} = 0 ξi=0
    因此
    y i = ( w T x i + b ) + ε y_i = (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon yi=(wTxi+b)+ε
    样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)恰好落在最大间隔的上界

  • 如果 α i ⋀ = C \alpha_i^{\bigwedge} = C αi=C,根据
    C − α i ⋀ − μ i ⋀ = 0 C – \alpha_i^{\bigwedge} – \mu_i^{\bigwedge} = 0 Cαiμi=0
    可知
    μ i ⋀ = 0 \mu_i^{\bigwedge} = 0 μi=0

    μ i ⋀ ξ i ⋀ = 0 \mu_i^{\bigwedge} \xi_i^{\bigwedge} = 0 μiξi=0
    得出
    ξ i ⋀ ≥ 0 \xi_i^{\bigwedge} \ge 0 ξi0
    由于样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)满足
    y i = ( w T x i + b ) + ε + ξ i ⋀ y_i = (\mathbf{w}^T \mathbf{x}_i + b) + \varepsilon + \xi_i^{\bigwedge} yi=(wTxi+b)+ε+ξi
    说明样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi)不低于最大间隔的上界

所以,当 0 < α i ⋁ < C 0 \lt \alpha_i^{\bigvee} \lt C 0<αi<C时,样本点是落在最大间隔下界的支持向量

如果你要找落在最大间隔上界的支持向量,应该要找 0 < α i ⋀ < C 0 \lt \alpha_i^{\bigwedge} \lt C 0<αi<C的样本点。

SVR的算法过程

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \cdots, (\mathbf{x}_N,y_N)\} T={
(x1,y1),(x2,y2),,(xN,yN)}

输出:分离超平面和分类决策函数。

算法步骤:

  1. 选择一个惩罚系数 C > 0 C \gt 0 C>0,构造约束优化问题
    min ⁡ α ⋁ , α ⋀   1 2 ∑ i = 1 N ∑ j = 1 N ( α i ⋀ − α i ⋁ ) ( α j ⋀ − α j ⋁ ) x i T x j + ∑ i = 1 N [ ( ε − y i ) α i ⋀ + ( ε + y i ) α i ⋁ ] s . t . ∑ i = 1 N ( α i ⋀ − α i ⋁ ) = 0 0 ≤ α i ⋁ ≤ C , i = 1 , 2 , ⋯   , N 0 ≤ α i ⋀ ≤ C , i = 1 , 2 , ⋯   , N \begin{aligned} \min_{\boldsymbol{\alpha}^{\bigvee}, \boldsymbol{\alpha}^{\bigwedge}} \, \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N (\alpha_i^{\bigwedge} – &\alpha_i^{\bigvee}) (\alpha_j^{\bigwedge} – \alpha_j^{\bigvee}) \mathbf{x}_i^T\mathbf{x}_j + \sum_{i=1}^N [ ( \varepsilon – y_i ) \alpha_i^{\bigwedge} + (\varepsilon + y_i) \alpha_i^{\bigvee} ] \\ s.t. \quad &\sum_{i=1}^N(\alpha_i^{\bigwedge} – \alpha_i^{\bigvee}) = 0 \\&0 \le \alpha_i^{\bigvee} \le C, \quad i=1,2,\cdots,N \\&0 \le \alpha_i^{\bigwedge} \le C, \quad i=1,2,\cdots,N \end{aligned} α,αmin21i=1Nj=1N(αis.t.αi)(αjαj)xiTxj+i=1N[(εyi)αi+(ε+yi)αi]i=1N(αiαi)=00αiC,i=1,2,,N0αiC,i=1,2,,N

  2. 用SMO算法求出最优参数 α ⋁ ∗ {\boldsymbol{\alpha}^{\bigvee}}^* α α ⋀ ∗ {\boldsymbol{\alpha}^{\bigwedge}}^* α

  3. 计算 w ∗ = ∑ i = 1 N ( α i ⋀ ∗ − α i ⋁ ∗ ) x i \mathbf{w}^* = \sum_{i=1}^N ({\alpha_i^{\bigwedge}}^* – {\alpha_i^{\bigvee}}^*) \mathbf{x}_i w=i=1N(αiαi)xi

  4. 寻找一个满足 0 < α i ⋁ ∗ < C 0 \lt {\alpha_i^{\bigvee}}^* \lt C 0<αi<C的样本点 ( x k , y k ) (\mathbf{x}_k,y_k) (xk,yk),计算 b ∗ = y k + ϵ − w ∗ T x k b^* = y_k +\epsilon – {\mathbf{w}^*}^T \mathbf{x}_k b=yk+ϵwTxk

  5. 构建最终的回归超平面 w ∗ T x + b ∗ = 0 {\mathbf{w}^*}^T \mathbf{x} + b^*=0 wTx+b=0和预测函数 f ( x ) = sgn ( w ∗ T x + b ∗ ) f(x) = \text{sgn}({\mathbf{w}^*}^T \mathbf{x} + b^*) f(x)=sgn(wTx+b)

与SVM类似,非线性情况下SVR也可以使用核方法,算法流程只要将内积 x i T x j \mathbf{x}_i^T \mathbf{x}_j xiTxj都替换成核函数 κ ( x i , x j ) \kappa(\mathbf{x}_i, \mathbf{x}_j) κ(xi,xj)即可。

带松弛变量的SVR的一种解释: ε \varepsilon ε不敏感损失+L2正则

ε \varepsilon ε不敏感损失( ε \varepsilon ε-insensitive loss)

ε \varepsilon ε不敏感损失表达式
L ε ( x ) = { 0 , ∣ x ∣ ≤ ε ∣ x ∣ − ε , ∣ x ∣ > ε L_{\varepsilon}(x)= \left\{ \begin{aligned} 0, \quad |x| \le \varepsilon \\ |x| – \varepsilon, \quad |x| \gt \varepsilon \end{aligned} \right. Lε(x)={
0,xεxε,x>ε

在这里插入图片描述

带松弛变量的SVR的一种解释

带松弛变量的SVR的优化函数: L ( w , b ) = 1 2 ∣ ∣ w ∣ ∣ 2 2 + C ∑ i = 1 N ( ξ i ⋁ + ξ i ⋀ ) L(\mathbf{w}, b) = \frac{1}{2}||\mathbf{w}||_2^2 + C \sum_{i=1}^N (\xi_i^{\bigvee} + \xi_i^{\bigwedge}) L(w,b)=21w22+Ci=1N(ξi+ξi)

根据之前对支持向量的讨论,有下列结论:

  • 对于在 ε \varepsilon ε管道内的样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi),即 ∣ y i − ( w T x i + b ) ∣ ≤ ε |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| \le \varepsilon yi(wTxi+b)ε

    ξ i ⋁ = 0 \xi_i^{\bigvee} = 0 ξi=0 ξ i ⋀ = 0 \xi_i^{\bigwedge} = 0 ξi=0,所以 ξ i ⋁ + ξ i ⋀ = 0 \xi_i^{\bigvee} + \xi_i^{\bigwedge} = 0 ξi+ξi=0

  • 对于在 ε \varepsilon ε管道外的样本点 ( x i , y i ) (\mathbf{x}_i,y_i) (xi,yi),即 ∣ y i − ( w T x i + b ) ∣ ≥ ε |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| \ge \varepsilon yi(wTxi+b)ε

    • 如果不低于间隔上界

      ξ i ⋁ = 0 \xi_i^{\bigvee} = 0 ξi=0 y i − ( w T x i + b ) = ε + ξ i ⋀ y_i – (\mathbf{w}^T \mathbf{x}_i + b) = \varepsilon + \xi_i^{\bigwedge} yi(wTxi+b)=ε+ξi,即 ξ i ⋀ = y i − ( w T x i + b ) − ε \xi_i^{\bigwedge} = y_i – (\mathbf{w}^T \mathbf{x}_i + b) – \varepsilon ξi=yi(wTxi+b)ε

      所以 ξ i ⋁ + ξ i ⋀ = ∣ y i − ( w T x i + b ) ∣ − ε \xi_i^{\bigvee} + \xi_i^{\bigwedge} = |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| – \varepsilon ξi+ξi=yi(wTxi+b)ε

    • 如果不高于间隔下界

      ξ i ⋀ = 0 \xi_i^{\bigwedge} = 0 ξi=0 ( w T x i + b ) − y i = ε + ξ i ⋁ (\mathbf{w}^T \mathbf{x}_i + b) – y_i = \varepsilon + \xi_i^{\bigvee} (wTxi+b)yi=ε+ξi,即 ξ i ⋁ = ( w T x i + b ) − y i − ε \xi_i^{\bigvee} = (\mathbf{w}^T \mathbf{x}_i + b) – y_i – \varepsilon ξi=(wTxi+b)yiε

      所以 ξ i ⋁ + ξ i ⋀ = ∣ y i − ( w T x i + b ) ∣ − ε \xi_i^{\bigvee} + \xi_i^{\bigwedge} = |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| – \varepsilon ξi+ξi=yi(wTxi+b)ε

因此,所有样本的 ξ i ⋁ + ξ i ⋀ \xi_i^{\bigvee} + \xi_i^{\bigwedge} ξi+ξi都可以用$ \varepsilon$不敏感损失表示
ξ i ⋁ + ξ i ⋀ = L ε ( y i − ( w T x i + b ) ) = { 0 , ∣ y i − ( w T x i + b ) ∣ ≤ ε ∣ y i − ( w T x i + b ) ∣ − ε , ∣ y i − ( w T x i + b ) ∣ > ε \begin{aligned} \xi_i^{\bigvee} + \xi_i^{\bigwedge} =& L_{\varepsilon}(y_i – (\mathbf{w}^T \mathbf{x}_i + b)) \\ =&\left\{ \begin{aligned} 0, \quad |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| \le \varepsilon \\ |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| – \varepsilon, \quad |y_i – (\mathbf{w}^T \mathbf{x}_i + b)| \gt \varepsilon \end{aligned} \right. \end{aligned} ξi+ξi==Lε(yi(wTxi+b)){
0,yi(wTxi+b)εyi(wTxi+b)ε,yi(wTxi+b)>ε

在这里插入图片描述
这里 ε \varepsilon ε不敏感损失要传达的意思是:如果样本点在 ε \varepsilon ε管道内,损失为0;否则损失是样本点在 y y y方向上到 ε \varepsilon ε管道的距离。

也就是,样本点在 ε \varepsilon ε管道内认为无损失,在 ε \varepsilon ε管道外才计算损失。

带松弛变量的SVR的目标函数可以写成
L ( w , b ) = C ∑ i = 1 N L ε ( y i − ( w T x i + b ) ) + 1 2 ∣ ∣ w ∣ ∣ 2 2 L(\mathbf{w}, b) = C \sum_{i=1}^N L_{\varepsilon}(y_i – (\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2}||\mathbf{w}||_2^2 L(w,b)=Ci=1NLε(yi(wTxi+b))+21w22
这个数学形式表明带松弛变量的SVR可以解释为 ε \boldsymbol{\varepsilon} ε不敏感损失+L2正则的机器学习模型。

总结

SVM是非常经典的机器学习算法,在集成学习和神经网络的算法流行之前,SVM在分类领域占据着统治地位。在大数据时代,SVM由于在大样本数据集上的计算量太大,所以热度有所下降,但不失为一个常用的机器学习算法。

SVM算法的优点:

  • 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然能保持良好的效果;
  • 仅仅依靠支持向量来决定超平面,无需依赖全部数据;
  • 有大量核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题;
  • 样本量不是海量数据的时候,分类准确率高,泛化能力强。

SVM算法的缺点:

  • 如果特征维度远远大于样本点,则SVM表现一般;
  • SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用;
  • 非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数;
  • SVM对缺失数据敏感。

今天的文章支持向量回归模型_支持向量回归SVR实例分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/77458.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注