普通滤波器原理图
如图1,3为差模电容,2为共模电感,4为共模电容。
一般滤波器不单独使用差模线圈,因为共模电感两边绕线不一致等原因,电感必定不会相同,因此能起到一定的差模电感的作用。如果差模干扰比较严重,就要追加差模线圈。
1.1 差模干扰:简单的说就是线对线的干扰。
如图,我们可以看到差模的原理图。UDM就是差模电压,IDM就是差模电流。IDM大小相同,方向相反。
1.2 差模干扰产生的原因
差模干扰中的干扰是起源在同一电源线路之中(直接注入).如同一线路中工作的电机,开关电源,可控硅等,他们在电源线上所产生的干扰就是差模干扰。
1.3如何影响设备。
差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。(表现为尖峰电压,电压跌落及中断.)
1.4.如何滤除差模干扰
主要采用差模电感和差模电容。
1.4-1差模电感工作原理:
可以看到,当电流流过差模线圈之后,线圈里面的磁通是增强的,相当于两个磁通之和。
线圈特性低频率低阻抗高频率高阻抗决定了在高频时利用它的高阻抗衰减差模信号。(如图下图所示):
当频率为50Hz时,线圈阻抗接近于0,相当于一根导线,不起任何衰减作用。
当频率为500kHz时,阻抗达到5k欧,而理想状态下,此时负载阻抗一般考虑为50欧,
根据上面公式,此时差模线圈分得了99%的差模干扰电压,而负载只分得了1%的差模干扰电压。
同时,电流也有很大衰减。(可以算出此时线圈的差模插入损耗)
1.4-2差模电容工作原理。
可以看到,电容特性低频率高阻抗高频率低阻抗。滤波器利用电容在高频时它的低阻抗短路掉差模干扰。(如图下图所示:)
当频率为50Hz时,电容阻抗趋近于无穷大,相当于短路,不起任何衰减作用。
当频率为500kHz时,电容阻抗很小,根据上式可以看到差模负载的电流衰减为趋近于0
如当频率为500kHz时负载50欧容抗0.05欧
此时电容分得了99.9%的差模干扰电流,而负载只分得了0.1%的差模干扰电流。
也就是说500kHz时,电容使得差模干扰下降了30dB.
第二章、共模干扰
2.1.共模就是共同对地的干扰:
如图,我们可以看到共模的原理图。UPQ就是共模电压,ICM1ICM2就是共模电流。
ICM1ICM2大小不一定相同,方向相同。
2.2.共模干扰产生的原因很多。
主要原因有以下几点。
1.电网串入共模干扰电压
2.辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰。
(原理是交变的磁场产生交变的电流,由于地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同)
3.接地电压不一样。也就是说地电位差异引入共模干扰。
4.也包括设备内部电线对电源线的影响。
2.3.如何影响设备。
共模电压有时较大,特别是采用隔离性能差的配电供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏,这种共模干扰可为直流、亦可为交流。
如图
2.4.如何滤除共模干扰(共模线圈共模电容)
2.4-1共模线圈
共模线圈和差模线圈原理比较类似,都是利用线圈高频时的高阻抗来衰减干扰信号。共模线圈和差模线圈绕线方法刚好相反(如图)。
因为差模线圈在滤除干扰的同时,还会一定程度的增加阻抗,而共模线圈对方向相反的电流基本不起作用,所以我们在能够满足特性的前提下,一般很少使用差模线圈。
文献一:这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。
文献二:我们了解电流定律,也知道电流产生磁通后,而且知道相同大小,相同圈数,不同方向的电流产生的磁通是会互相抵消,導致整个共模线圈对不同方向的电流不起作用,而仅仅让其通过;但对相同方向的电流所产生的磁通,因為磁通方向相同,磁通沒有抵消,故些共模线圈起着阻抗器的作用,压制了同方向的杂讯电流,达成抗电磁干扰的目的。
2.4-2共模电容工作原理
共模电容的工作原理和差模电容的工作原理是一致的,
都是利用电容的高频低阻抗,使高频干扰信号短路,而低频时电路不受任何影响。
只是差模电容是两极之间短路。
而共模电容是线对地短路。3300pF1.6mm引脚共模电容谐振频率点为19.3MHz
**(下面仅为个人观念,仅供参考
我觉得,共模电容不是单独工作的。它是和共模电感共同工作组成一个谐振回路共同起作用☺如下图,因为我对此没有100%把握。等我弄明白再一起讨论吧)
穿心电容
在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因,一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果,如图下所示。
穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。
我的理解是首先,穿心电容是一个共模电容,它是线对地的电容。
其次,穿心电容是一个比较理想的电容,它没有引线,大大提高了谐振频率点。
我没有具体测过,但是从插入损耗曲线可以推断,在频率为100M-10G时,穿心电容有很低的阻抗,很接近理想电容曲线。
今天的文章差模和共模干扰的区别_开关电源的共模干扰和差模干扰分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/83019.html