微软_多输入多输出模型「建议收藏」

微软_多输入多输出模型「建议收藏」点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达点击进入—【多模态和Transformer】交流群萧箫发自凹非寺转载自:量子位(QbitAI)多模态大模型,终于迎来“大一统”时刻!从声音、文字、图

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【多模态和Transformer】交流群

萧箫 发自 凹非寺
转载自:量子位(QbitAI)

多模态大模型,终于迎来“大一统”时刻!

从声音、文字、图像到视频,所有模态被彻底打通,如同人脑一般,实现了真正意义上的任意输入,任意输出

要知道,多模态一直是学术界公认要达到更强智能的必经之路,连GPT-4都在往这个方向发展。

f269677c167612b6cef5ffabb627df46.gif

也正是因此,这项来自微软、北卡罗来纳大学教堂山分校的新研究一经po出,立即在社交媒体上爆火,有网友惊叹:

这是我最近见过最不可思议的一篇论文!

86b9deae4f08dbccb657c7a19b3056e0.png

究竟有多不可思议?

只需告诉大模型,想要“一只玩滑板的泰迪熊”,并输入一张照片+一段声音:

da68d26712af4d9348515f756dced1c0.png

它立刻就能精准get要点,生成一段在下雨天在城市里玩滑板的心碎小熊录像,仔细听还会发现配上了新的雨声

效果太过于鹅妹子嘤,以至于不少网友表示“有被吓到”:

72052de2d62aa2593ec91f252b1a96a0.pngc51562ffcb54aa164b8959bf672d002d.gif

还有网友感叹“新时代的到来”:

等不及看到创作者们用这些AI工具制作各种沉浸式故事体验了。这简直给RPG角色扮演游戏赋予了全新的意义。

525ce4f075c609413608e21ce94c88a3.png

值得一提的是,一作Zineng Tang虽然本科还没毕业,但他已经在CVPR、发了6篇顶会论文,其中5篇都是一作

所以,这个号称能够“转一切”(any-to-any)的大一统大模型,实现效果究竟如何?

4种模态随意选,打出“组合拳”

大模型CoDi,具有任意输入和输出图、文、声音、视频4种模态的能力。

无论是单模态生成单模态(下图黄)、多模态生成单模态(下图红)、还是多模态生成多模态(下图紫),只要指定输入和输出的模态,CoDi就能理解并生成想要的效果:

cf50cc51534e0191a74fa5340f3ddc6a.gif

先来看单模态生成单模态

输入任意一种模态,CoDi都能联想并输出指定的模态,例如,输入一张风景图像,就能输出“山景,日出”这样的文字提示词:

1b5b95da9990526137213a3927152095.png

或是输入一段铁轨碰撞声,就能生成一张地铁图像:

9f9a277067b00f954b972b5a35f15830.png

面对多模态生成单模态时,CoDi威力同样不减。

输入一张“熊猫吃竹子”图像,加上一段“在咖啡桌上吃”的文字要求:

4dd8b3cfe473a9350dc8d44c08f1d966.png

CoDi就能生成一段大熊猫坐在咖啡桌旁吃竹子的视频:

fd97f8ce5b0c494ec5e6fa5d9ffc6ef6.gif

或是输入一组文字提示词“油画,恐怖画风,优雅复杂的概念艺术,克雷格·穆林斯(CG绘画之父)风格”,加上一段拍打木板的水声:

CoDi在经过联想后,就能输出一张精致的、气势恢宏的黄昏时分海盗船画像:

803f1c6699d21da517b55b8f6e2b5d8c.png

最后来看看多模态生成多模态的效果。

给CoDi提供一段钢琴声,加上一张森林中的照片:

304be2d881b9a1013227e629de401d0a.png

CoDi就能想象出一段“在森林中弹钢琴”的文字,并配上对应的插图:

dd5b00e9535db2512b41fb0e73ae7df7.png

要知道在这之前,AI生成的视频不少都没有配音,停留在老式的“无声电影”阶段。

然而CoDi不仅能生成视频,还能生成搭配视频食用的声音。

例如根据一个“天空中的花火”文字提示词+一段对应的音频,就能生成一个带有爆炸声音的烟花录像:

所以,CoDi究竟是如何做到理解不同的模态,并“打出组合拳”的?

用“对齐”来节省大模型训练数据

事实上,CoDi的打造面临两个难点。

首先是缺少训练数据的问题,以作者们能收集到的数据集为例:

无论是像Laion400M这样的文图数据集、还是像AudioSet之类的音频文字数据集,或是油管上的图像音视频数据集,以及Webvid10M之类的视频数据集,都属于“单模态生成单个或两个模态”的类型。

40d9756fe990f0caa5e0bde9941d83ac.png

然而,多模态大模型的训练数据需求,随着模态数量的增加呈指数级增长,许多输入输出组合,往往缺少对应的训练数据集。

其次,已有的扩散模型大多是1v1的类型,如何设计并训练模型,确保多模态输入输出的效果,同样是个问题。

针对这两个问题,作者们决定分两个阶段打造CoDi,让它不仅能实现单模态“完美输出”、还能做到多模态“1+1>2”。

阶段一,组合条件训练,给每个模态都打造一个潜在扩散模型(LDM),进行组合训练。

针对A模态生成B模态数据集缺失的问题,作者们提出了一种名为桥接对齐(Bridging Alignment)的策略。

具体来说,就是以带文本模态的数据集为“中介”,对齐另外几种模态的训练效果。

以音频生成图像为例。

虽然音频生成图像数据集不多,但文本生成音频、文本生成图像的数据集却有不少,因此可以将这两类数据集合并起来,用于训练文本+音频生成图像的效果。

在此期间,文本和音频输入经过模型处理,会被“放置”进一个共享特征空间,并用输出LDM来处理输入输入的组合特征,输出对应的图像结果。

d62a5da5dca48ddadb4c8bc99270d209.png

阶段二,进一步增加生成的模态数量。

在阶段一的基础上,给每个潜在扩散模型和环境编码器上增加一个交叉注意力模块,就能将潜在扩散模型的潜变量投射到共享空间中,使得生成的模态也进一步多样化。

4c4cdaea9fadd1c0f5013bc3dcb63b87.png

最终训练出来的模型,虽然训练数据类型不是“全能的”,但也具备了多模态输入、多模态输出的能力。

e1120e72e3d69e5e09509415c66c2f42.png

值得一提的是,可别以为这种方法会降低模型生成的质量。

事实上,在多种评估方法上,CoDi均超越了现有多模态大模型的生成效果。

e9b8400f46ee7b8c7527a5b30d4150fc.png

华人本科生,5篇顶会论文一作

一作Zineng Tang,本科就读于北卡罗来纳大学教堂山分校,也是微软研究院的实习生,今年6月将进入加州大学伯克利分校读博。

他的研究兴趣在于多模态学习、机器学习和NLP领域,而从大一开始,他就在NeurIPS、CVPR、ACL和NAACL等顶会上相继发了6篇文章,其中5篇一作。

04e72edab431099c4aff17767b5ca5f3.png

就在今年1月,Zineng Tang还获得了2023年的美国计算机研究学会(CRA)设立的优秀本科生研究员奖。

每年全美国能获得这个奖项的本科生,只有4人

dc0d1296745823e25a9297e05583776d.png

这一奖项旨在表彰在计算机研究领域有杰出研究潜力的本科生,包括MIT、斯坦福、哈佛和耶鲁大学等不少北美名校在内,每年都会提名一些优秀学生,经过层层筛选后决定获奖者。

通讯作者Ziyi Yang,目前是微软Azure认知服务研究团队(CSR)的高级研究员,研究方向是多模态理解和生成,文档智能和NLP等。

在加入微软之前,他本科毕业于南京大学物理系,并于斯坦福大学获得电气工程硕士和机械工程博士学位。

通讯作者Mohit Bansal,是北卡罗来纳大学教堂山分校计算机系教授。他于加州大学伯克利分校获得博士学位,目前研究方向是NLP和多模态机器学习,尤其侧重语言生成问答和对话、以及可解释深度学习等。

你感觉多模态大模型发展的下一阶段,会是什么样子?

论文地址:
https://arxiv.org/abs/2305.11846

项目地址:
https://github.com/microsoft/i-Code/tree/main/i-Code-V3

参考链接:
[1]https://twitter.com/AviSchiffmann/status/1660771055676588033
[2]https://twitter.com/ZinengTang/status/1660726736642887681
[3]https://cra.org/2023-outstanding-undergraduate-researcher-award-recipients/
[4]https://codi-gen.github.io/

点击进入—>【多模态和Transformer】交流群

最新CVPR 2023论文和代码下载


后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

多模态和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-多模态或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如多模态和Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看cc193000aa349536fbaa418ac9675d09.gif

今天的文章微软_多输入多输出模型「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/83786.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注