Hive实现同比环比计算

Hive实现同比环比计算本文详细介绍了在 Hive 中如何计算销售数据的同比和环比 包括月年销售占比 窗口函数的应用以及自关联方法来处理不连续时间数据

同比环比的计算

测试数据

1,2020-04-20,420
2,2020-04-04,800
3,2020-03-28,500
4,2020-03-13,100
5,2020-02-27,300
6,2020-01-07,450
7,2019-04-07,800
8,2019-03-15,1200
9,2019-02-17,200
10,2019-02-07,600
11,2019-01-13,300
CREATE TABLE ods_saleorder  (
  order_id int ,
  order_time date ,
  order_num int
)ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

销售量的月年占比

关联实现

select
    t1.m_num,
	t1.cmonth,
	t2.y_num,
	t2.cyear,
	round( m_num / y_num, 2 ) AS ratio
from(
        select
            sum(order_num) as m_num,
            DATE_FORMAT(order_time,'yyyy-MM') as cmonth
        from
            ods_saleorder
        group by
            DATE_FORMAT(order_time,'yyyy-MM')
    ) as t1
inner join
    (
        select
            sum(order_num) as y_num,
            DATE_FORMAT(order_time,'yyyy') as cyear
        from
            ods_saleorder
        group by
            DATE_FORMAT(order_time,'yyyy')
    ) as t2
on substring(t1.cmonth,1,4) = t2.cyear;

在这里插入图片描述
窗口实现

SELECT
    order_month,
    num,
    total,
    round( num / total, 2 ) AS ratio
FROM
    (
        select
            substr(order_time, 1, 7) as order_month,
            sum(order_num) over (partition by substr(order_time, 1, 7)) as num,
            sum(order_num) over (partition by substr( order_time, 1, 4 )) total,
            row_number() over (partition by substr(order_time, 1, 7)) as rk
        from ods_saleorder
    ) temp
where rk = 1;

同比环比

与上年度数据对比称同比,与上月数据对比称环比

相关公式如下:

同比增长率计算公式=(当年值-上年值)/上年值x100% 

环比增长率计算公式=(当月值-上月值)/上月值x100% 

lead lag 的实现

这里我们就用环比做个例子,同比类似

select
    now_month,
    now_num,
    last_num,
    round( (now_num-last_num) / last_num, 2 ) as ratio
FROM(
    select
        now_month,
        now_num,
        lag( t1.now_num, 1) over (order by t1.now_month ) as last_num
    from
        (
            select
                substr(order_time, 1, 7) as now_month,
                sum(order_num) as now_num
            from ods_saleorder
            group by
                substr(order_time, 1, 7)
        ) t1
) t2;

在这里插入图片描述
我们看到有null 值,这里我们可以使用,lag的默认值做一次优化

select
    now_month,
    now_num,
    last_num,
    -- 分母是0的话返回值是null
    nvl(round( (now_num-last_num) / last_num, 2 ),0)as ratio
FROM(
    select
        now_month,
        now_num,
        lag( t1.now_num, 1,0) over (order by t1.now_month ) as last_num
    from
        (
            select
                substr(order_time, 1, 7) as now_month,
                sum(order_num) as now_num
            from ods_saleorder
            group by
                substr(order_time, 1, 7)
        ) t1
) t2;

在这里插入图片描述
其实到这里我们就处理完了,但是这样真的对吗?

我们看到2020-01last_num 是800 ,也就是2019-04,其实到这里我们就明白了,我们的数据是不连续的,所以我们这样计算是不行的,如果每个月都齐全,都有数据lag(num,12)就可以。

那就只能做自关联了,这样的话我们可以对时间做精准的限制

自关联的实现

with temp as (
    select
        now_month,
        now_num,
        substr(date(concat(now_month,'-','01')) - INTERVAL '1' month, 1, 7) as last_month
    from(
         select
             substr(order_time, 1, 7) as now_month,
             sum(order_num) as now_num
         from ods_saleorder
         group by
             substr(order_time, 1, 7)
    ) tmp
)
select
    t1.now_month,
	t1.now_num,
	t1.last_month,
	t2.now_num,
    nvl(round( (t1.now_num - t2.now_num) / t2.now_num, 2 ),0) as ratio
from temp as t1
inner join temp as t2
on t1.last_month = t2.now_month;

在这里插入图片描述
这里的时间计算INTERVAL 你也可以换成其他函数

with temp as (
    select
        now_month,
        now_num,
        substr(add_months(concat(now_month,'-','01'),-1), 1, 7) as last_month
    from(
         select
             substr(order_time, 1, 7) as now_month,
             sum(order_num) as now_num
         from ods_saleorder
         group by
             substr(order_time, 1, 7)
    ) tmp
)
select
    t1.now_month,
	t1.now_num,
	t1.last_month,
	nvl(t2.now_num,0),
    nvl(round( (t1.now_num - t2.now_num) / t2.now_num, 2 ),0) as ratio
from temp as t1
left join temp as t2
on t1.last_month=t2.now_month;
编程小号
上一篇 2025-01-11 15:01
下一篇 2025-01-11 14:51

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/108210.html