导数及高阶导数的计算方法_常用高阶导数公式

导数及高阶导数的计算方法_常用高阶导数公式和、差、积、商求导法则  设u=u(x),v=v(x)都可导,则:(Cu)’=Cu’,C是常数 (u±v)’=u’±v’ (uv)’=u’v+uv’ (u/v)’=(u’v–uv’)/v2  

 

和、差、积、商求导法则

  设u=u(x),v=v(x)都可导,则:

  1. (Cu)’ = Cu’, C是常数
  2. (u ± v)’ = u’ ± v’
  3. (uv)’ = u’v + uv’
  4. (u/v)’ = (u’v – uv’) / v2

  1、2不解释,下面给出3、4的推导过程

乘法法则的推导过程

导数及高阶导数的计算方法_常用高阶导数公式

  乘法法则可扩展:

导数及高阶导数的计算方法_常用高阶导数公式

除法法则的推导过程

导数及高阶导数的计算方法_常用高阶导数公式

示例1:f'(1/x)

  根据除法法则:

导数及高阶导数的计算方法_常用高阶导数公式

示例2:f'(x-n)

  根据除法法则:

导数及高阶导数的计算方法_常用高阶导数公式

  上式结果也可直接根据幂函数求导法则得出,幂函数f(x) = Xn的导数:f’(x) = nxn-1

示例3:(secx)’

导数及高阶导数的计算方法_常用高阶导数公式

链式求导法则

  链式求导法则也称为复合函数求导法则。若u=g(x)在x点可导,y=f(u)在u=g(x)点可导,则y=f(g(x))在x点可导,其导数是:

导数及高阶导数的计算方法_常用高阶导数公式

  第二种写法看起来更好理解。

示例1:y=(sinx)10求导

  这是一个典型的符合函数,内部函数是u=sinx,外部函数是y=u10,根据公式:

导数及高阶导数的计算方法_常用高阶导数公式

示例2:sin(10x)求导

导数及高阶导数的计算方法_常用高阶导数公式

高阶导数

  高阶导数实际上是对导数求导,也就是不断求导。

  二阶导数表示为(u’)’=u’’;三阶导数u’’’;四阶导数不能再用撇号表示了,需要使用上标u(4);n阶导数u(n)。在训练集中,上标也被表示为第几组训练集,在此我们看到,数学中的符号经常会被重用,在不同上下文中有不同的含义。

  sinx的二阶导数:(sinx)’’=(cosx)’=-sinx

  高阶导数也有不同的表示法,以三阶导数为例:

导数及高阶导数的计算方法_常用高阶导数公式

  看起来越来越乱了-_-|||

幂函数的高阶导数

D1xn = nxn-1

D2xn = ( D1xn)’= (nxn-1)’=n(xn-1)’=n(n-1)(x n-2)

D3xn = (D2xn)’ = n(n-1)(n-2)(xn-3)

……

Dn-1xn = n(n-1)(n-2)(n-3)…(2)x1

Dnxn = n(n-1)(n-2)(n-3)…(2)(1)x0 = n!

Dn+1xn = (n!)’ = 0

 

高阶导数的意义

  几何意义比较容易理解,一阶导数是切线的斜率,二阶是斜率的变化率,三阶是斜率的变化率的变化率……阶数越高,刻画的变化越精细。

  物理意义是百度来的,用时间、距离、速度举例:

  位移相对于时间的一阶导数是速度,二阶导数是加速度,三阶导数是急动度(加速度的的变化率),四阶导数是什么痉挛度(不知道是不是瞎编出来的,从这开始就理解不了了)……当一辆小车尾部遭受撞击时,加速度会突然改变,小车具有急动度。汽车工程师用急动度作为评判乘客不舒适程度的指标;按照这一指标,具有恒定加速度和零急动度的人体感觉最舒适。在竞技举重中,举重运动员进行所有将杠铃举过头顶的动作时都有急动度。当轮船到达溪谷,突然减速时,轮船有急动度,因为轮船加速度的大小和方向都要改变。

总结

  1.函数的和、差、积、商求导法则

  1)         (Cu)’ = Cu’, C是常数

  2)         (u ± v)’ = u’ ± v’

  3)         (uv)’ = u’v+ uv’

  4)         (u/v)’ = (u’v – uv’) / v2

  2.链式求导法则(复合函数求导法则)

 导数及高阶导数的计算方法_常用高阶导数公式

  3.高阶导数

  对导数求导,u’’,u’’’,u(4)

  Dnxn = n!

  Dn+1xn = 0


    作者:我是8位的

   出处:http://www.cnblogs.com/bigmonkey

   本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

 

今天的文章导数及高阶导数的计算方法_常用高阶导数公式分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/89276.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注