Subspace本身并不是一个很难的概念,就是一个自己也是space的子集合。其检验可以简化为Theorem 1, 即 α , β ∈ W , c ∈ F ⇔ c α + β ∈ W \alpha,\beta \in W,c\in F\Leftrightarrow c\alpha+\beta\in W α,β∈W,c∈F⇔cα+β∈W, 在很多其他的书中,这个定理用于subspace的定义。Example 6 中给出了一些例子,包括zero subspace,symmetric,Hermitan(self-adjoint)空间等。Example 7 说明homogeneous system的解的集合是一个subspace,并且还推广了一个矩阵的带数乘的分配律,即 A ( d B + C ) = d ( A B ) + A C A(dB+C)=d(AB)+AC A(dB+C)=d(AB)+AC,当然里面矩阵的乘法要有意义。
从Theorem 2开始,用一个很新的方式看待某一类特殊的subspace,即subspace spanned by S,Theorem 2首先说明,V的任意subspace的交集还是一个subspace,由此可知,包含S的subspace有一个最小的subspace(不断地取S的subspace的交集),并因此将subspace spanned by S定义出来:所有包含S的subspace的交。这一定义的好处是允许S有无限元素(实际上是无限维元素),当S只包含有限个vector时,subspace spanned by S是传统上大家比较熟悉的样子。Theorem 3即阐述了:subspace spanned by S实际上是S中vector所有的linear combination的集合,注意这里同样没有限制S是有限的,这就是这一种subspace定义方式的好处。
接下来有一个新的定义即集合的和或者说subspace的和,实质是每个集合中任取一个vector并相加而组成的集合。如果 W 1 , W 2 , … , W k W_1,W_2,\dots,W_k W1,W2,…,Wk是 V V V的subspace,那么 W = W 1 + W 2 + ⋯ + W k W=W_1+W_2+\dots+W_k W=W1+W2+⋯+Wk也是一个subspace(按定义可证),并且 W = subspace spanned by W 1 ∪ ⋯ ∪ W k W=\text{subspace spanned by }W_1\cup\dots \cup W_k W=subspace spanned by W1∪⋯∪Wk,因为采用Theorem 3的类似证法,任意包含 W 1 ∪ ⋯ ∪ W k W_1\cup\dots \cup W_k W1∪⋯∪Wk的subspace都会包含 W W W。
最后是几个例子,其中Example 10和11比较精彩。Example 10提出了row-space的概念,其是矩阵的row vectors spanned的subspace,为未来引入矩阵的rank打下基础。Example 11是一个无限维的subspace的例子,并且为第四章介绍多项式打下基础。
Exercises
1. Which of the following sets of vectors α = ( a 1 , … , a n ) \alpha =(a_1,\dots,a_n) α=(a1,…,an) in R n R^n Rn are subspaces of R n ( n ≥ 3 ) R^n(n\geq3) Rn(n≥3)?
( a ) all α \alpha α such that a 1 ≥ 0 a_1\geq0 a1≥0;
( b ) all α \alpha α such that a 1 + 3 a 2 = a 3 a_1+3a_2=a_3 a1+3a2=a3;
( c ) all α \alpha α such that a 2 = a 1 2 a_2=a_1^2 a2=a12;
( d ) all α \alpha α such that a 1 a 2 = 0 a_1a_2=0 a1a2=0;
( e ) all α \alpha α such that a 2 a_2 a2 is rational.
Solution:
(a) No, since ( 1 , 0 , … , 0 ) (1,0,\dots,0) (1,0,…,0) satisfies, but − ( 1 , 0 , … , 0 ) = ( − 1 , 0 , … , 0 ) -(1,0,\dots,0)=(-1,0,\dots,0) −(1,0,…,0)=(−1,0,…,0) doesn’t.
(b) Yes, for α = ( a 1 , … , a n ) , β = ( b 1 , … , b n ) \alpha=(a_1,\dots,a_n ),\beta=(b_1,\dots,b_n) α=(a1,…,an),β=(b1,…,bn), if a 1 + 3 a 2 = a 3 , b 1 + 3 b 2 = b 3 a_1+3a_2=a_3,b_1+3b_2=b_3 a1+3a2=a3,b1+3b2=b3, then any c ∈ R c\in R c∈R, the vector c α + β = ( c a 1 + b 1 , … , c a n + b n ) c\alpha+\beta=(ca_1+b_1,\dots,ca_n+b_n) cα+β=(ca1+b1,…,can+bn) has the property
( c a 1 + b 1 ) + 3 ( c a 2 + b 2 ) = c ( a 1 + 3 a 2 ) + b 1 + 3 b 2 = c a 3 + b 3 (ca_1+b_1 )+3(ca_2+b_2 )=c(a_1+3a_2 )+b_1+3b_2=ca_3+b_3 (ca1+b1)+3(ca2+b2)=c(a1+3a2)+b1+3b2=ca3+b3
( c ) No, since ( 1 , 1 , … , 0 ) (1,1,\dots,0) (1,1,…,0) satisfies, but 2 ( 1 , 1 , … , 0 ) = ( 2 , 2 , … , 0 ) 2(1,1,\dots,0)=(2,2,\dots,0) 2(1,1,…,0)=(2,2,…,0) doesn’t.
(d) No, since ( 1 , 0 , … , 0 ) (1,0,\dots,0) (1,0,…,0) and ( 0 , 1 , … , 0 ) (0,1,\dots,0) (0,1,…,0) satisfies, but ( 1 , 1 , … , 0 ) = ( 1 , 0 , … , 0 ) + ( 0 , 1 , … , 0 ) (1,1,\dots,0)=(1,0,\dots,0)+(0,1,\dots,0) (1,1,…,0)=(1,0,…,0)+(0,1,…,0) doesn’t.
(e) No, since ( 0 , 1 , … , 0 ) (0,1,\dots,0) (0,1,…,0) satisfies, but 2 ( 0 , 1 , … , 0 ) = ( 0 , 2 , … , 0 ) \sqrt{2} (0,1,\dots,0)=(0,\sqrt{2},\dots,0) 2(0,1,…,0)=(0,2,…,0) doesn’t.
2. Let V V V be the (real) vector space of all functions f f f from R R R into R R R. Which of the following sets of functions are subspaces of V V V?
( a ) all f f f such that f ( x 2 ) = f ( x ) 2 f(x^2)=f(x)^2 f(x2)=f(x)2;
( b ) all f f f such that f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1);
( c ) all f f f such that f ( 3 ) = 1 + f ( − 5 ) f(3)=1+f(-5) f(3)=1+f(−5);
( d ) all f f f such that f ( − 1 ) = 0 f(-1)=0 f(−1)=0;
( e ) all f f f which are continuous.
Solution:
(a) No, consider f ( x ) = 1 f(x)=1 f(x)=1 if x ≥ 0 x\geq 0 x≥0 and f ( x ) = − 1 f(x)=-1 f(x)=
今天的文章2.2 Subspaces分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/89288.html